Васильев Александр Александрович

Доклад «Проблема первой стенки в управляемом термоядерном синтезе»

Научный руководитель: д.ф.-м.н. Бурдаков А.В.

Институт ядерной физики им. Г.И. Будкера СО РАН Новосибирский государственный университет

План доклада

- 1. Необходимость УТС
- 2. Физические основы УТС
- 3. Постановка проблемы первой стенки
- 4. Текущие работы по данной тематике

Источники энергии

≻ Ископаемое топливо

Уголь, нефть, природный газ, и т.д.

> Альтернативные, не нарушающие тепловой баланс

Гидроэнергетика

Солнечная энергетика

Ветровая энергетика

Сжигание биомассы

Экзотика (приливная, геотермальная и прочие)

> Альтернативные, нарушающие тепловой баланс

Ядерная энергетика

Солнечная в космосе (с передачей на Землю)

Управляемый термоядерный синтез

Рост энергопотребления

Разница между и требуемой и производимой энергией ставит проблему поиска новых видов электроэнергетики.

Удельная энергия связи

Типичные термоядерные реакции

Классические термоядерные реакции

- $D + T \longrightarrow {}^{4}He + n$ [17,59 MirgarsB]
- $D + D \xrightarrow{50\%} T + p$ [4,03 MəB]
 - $\xrightarrow{50\%} {}^{3}\text{He} + n \quad [3,27 \text{ M} \Rightarrow \text{B}]$
- $T + T \longrightarrow {}^{4}He + 2n$ [11,33 M₃B]

Анейтронные термоядерные реакции

$$\label{eq:def-def-basic} \begin{array}{ll} \mathrm{D} + {}^{3}\mathrm{He} & \longrightarrow {}^{4}\mathrm{He} + \mathrm{p} & [18,\!35\,\mathrm{M}\bar{\imath}\mathrm{B}]. \end{array}$$

Сечение термоядерных реакции

Скорость термоядерных реакции

Т, кэВ

Способы удержания плазмы

Гравитационное

Инерциальное

Магнитное

Магнитное удержание плазмы

Открытые ловушки

Замкнутые ловушки

Строение токамака (общая схема)

Прогресс в классических токамаках

Проблема первой стенки

Проект ИТЭР и проблема первой стенки

Для дивертора подходит только вольфрам

Процессы на первой стенке, обращенной к плазме

Существующие системы и параметры

Тип	Установка	Длительность воздействия [мкс]	Плотность энергии [МДж/м²]	Площадь воздействия [см²]	Энергия частиц [кэВ]
ЭЛМы типа I	ITER	100 - 1000	1-10	100 000	1-5
Плазменный ускоритель	КСПУ-Х	250	0.2-2.5	250	0.4-0.9
Лазер	FZJ	1000	0.19 - 0.9	7*10 ⁻²	ИК излучение
Электронный пучок	JUDITH II	1000	10	0.2	30-60
Электронный пучок	ГОЛ-3 (длин. импульс)	100-300	1.5 - 2.5	2	55-85

Облучение нагретых мишеней на установке ГОЛ-3

Конструкция мишенедержателя с нагревателем

Схема мишенедержателя с нагревателем. 1 – маска, 2 – мишень (вольфрам 12х12х5 мм), 3 – подложка, 4 – нихромовый нагреватель, 5 – основание, 6 – термопара.

Нагреватель: нихром d=0,8 мм; 8 секций, соединенных параллельно по ~0.8 Ом каждая; диэлектрики: слюда и керамические трубки.

Фотографии мишенедержателя в выходном узле Термо-ЭДС во время выстрелов 20.3±0.7 мВ (510±20 °С)

Поверхность вольфрама после облучения Снимки со сканирующего электронного микроскопа Jeol JCM5700 Облучение по 10 выстрелов с нагрузкой 1 МДж/м² в каждом

Мишень без предварительного нагрева М

Мишень при нагреве до ~500°С

Наблюдаем:

Сеть трещин ~5 кратеров на мм² Отсутствие трещин ~17 кратеров на мм²

Многоимпульсное облучение на стенде с источником электронов

Схема стенда: 1 – импульсный клапан, 2 – дуговой канал, 3 – катушка магнитной изоляции дуги, 4 – экспандер дугового разряда, 5 – керамический изолятор, 6 – анод диода, 7 – труба дрейфа, 8 – цилиндр Фарадея, 9 – катушки магнитного поля.

Поверхность мишеней после облучения

Облучение W мишеней с энерговыделением около 0.75 МДж/м² в максимуме с количеством выстрелов 10, 100 и 1000.

Фото мишеней

100 выстрелов

10 выстрелов

1000 выстрелов

Уширение трещин при увеличении количества выстрелов 10 выстрелов 100 выстрелов

Сеть тонких трещин

Трещины в ~2-3 раза шире

Оплавление приповерхностного слоя 1000 выстрелов

Вблизи крупных трещин обнаружено плавление небольшого поверхностного слоя.

Схема стенда для материаловедческих исследований

Стенд по изучению эрозии поверхности вольфрама

1. Электронный пучок

1.1. Мощность 4 МВт
1.2. Длительность до 0.3 мс
1.3. Нагрузка 2,5 МДж/м^2
2. Магнитное поле 0.22 Тл
<u>З. Диагностики</u>

3.1.3 канала рассеяния на микрочастицах непрерывного лазера

3.2. ССD-камера для снятия картины температуры поверхности

3.3. ССD-камера для снимка рассеяния лазера на поверхности мишени

3.4. ССД-камера для снимка разлета капель вольфрама

Сигналы рассеяния на микрочастицах

Полный энерговклад ~350 Дж Длительность ~140 мкс

Снимок капель вольфрама

Полный энерговклад ~530 Дж Длительность ~124 мкс

Снимки мишени во время выстрела и после

~100 выстрелов Полный энерговклад 200÷600Дж Длительность 80÷150 мкс

Снимки мишени во время выстрела в ИК-спектре

4 последовательных выстрела. Полный энерговклад ~180 Дж. Длительность 130 мкс

Спасибо за внимание!

